Generators and subgroups for $\operatorname{Aut}\left(\mathrm{F}_{3}\right)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28379
(http://iopscience.iop.org/0305-4470/28/2/014)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 00:51

Please note that terms and conditions apply.

Generators and subgroups for $\operatorname{Aut}\left(\boldsymbol{F}_{\mathbf{3}}\right)$

Peter Kramer
Institut für Theoretische Physik der Universität, Tübingen, Germany

Received 19 September 1994, in final form 11 November 1994

Abstract

The automorphisms of the free group F_{3} with three generators form the group $\operatorname{Aut}\left(F_{3}\right)$. New involutive generators and relations for $\operatorname{Aut}\left(F_{3}\right)$ are given which explain the relations given by Nielsen. Finite Coxeter groups and (normal) subgroups are derived which admit generalizations to $n \geqslant 3$.

1. Introduction

The free group F_{n} with n generators provides a description of non-commutative systems in physics. Therefore the group $\operatorname{Aut}\left(F_{n}\right)$ of its automorphisms, studied first by Nielsen [10], is of considerable interest for these systems. The groups F_{n} and $\operatorname{Aut}\left(F_{n}\right)$ have been used to formulate a non-commutative crystallography which encompasses aspects of quasicrystals, [1-3,5-7]. In [8] a new system of involutive generators and relations for $\operatorname{Aut}\left(F_{2}\right)$ was introduced to derive the relations due to Nielsen. In what follows we present a similar analysis for $\operatorname{Aut}\left(F_{3}\right)$. From Nielsen's analysis, $\operatorname{Aut}\left(F_{3}\right)$ shows almost the full complexity of $\operatorname{Aut}\left(F_{n}\right)$. Involutive generators and new relations are given and used to derive and explain the relations of Nielsen. Certain (normal) subgroups, among them the finite Coxeter groups A_{3} and B_{3}, are explicitly constructed, with counterparts for $n \geqslant 3$.

2. Nielsen generators and relations

Let F_{n} denote the free group with n generators, and denote by $\Phi_{n}:=\operatorname{Aut}\left(F_{n}\right)$ its group of automorphism [10]. We present a set of four generators and relations R_{i} for Φ_{n} due to Nielsen. The sign $a \rightleftharpoons b$ indicates that a, b commute.

Proposition I (Nielsen 1924) [10,9]. Aut $\left(F_{n}\right)$ is the group

$$
\begin{equation*}
\Phi_{n}:=\left\langle P, Q, \sigma, U \mid R_{1} \ldots R_{18}\right\rangle \tag{1}
\end{equation*}
$$

with relations

$$
\begin{array}{rlrl}
\sigma^{2} & =P^{2}=e \quad\left(R_{1}, R_{2}\right) \\
(P \sigma P U)^{2} & =e \quad\left(R_{3}\right) & \\
U^{-1} P U P \sigma U \sigma P \sigma & =e \quad\left(R_{4}\right) \\
U & \rightleftharpoons \sigma U \sigma \quad\left(R_{5}\right) \tag{2a}\\
(Q P)^{n-1} & =Q^{n}=e & \left(R_{6}, R_{7}\right) \\
P & \rightleftharpoons Q^{-i} P Q^{i} \quad i=1 \ldots[n / 2] \\
\sigma & \rightleftharpoons Q^{-1} P Q \quad\left(R_{9}\right)
\end{array}
$$

$$
\begin{array}{rlr}
\sigma & \rightleftharpoons Q P \quad\left(R_{10}\right) \\
\sigma & \rightleftharpoons Q^{-1} \sigma Q \quad\left(R_{11}\right) \\
\left(P Q^{-1} U Q P\right)\left(Q^{-1} U Q\right) & =U Q^{-1} U Q U^{-1} \quad\left(R_{12}\right) \\
U & \rightleftharpoons Q^{-2} P Q^{2} \quad\left(R_{13}\right) \\
U & \rightleftharpoons Q P Q^{-1} P Q \quad\left(R_{14}\right) \tag{2b}\\
U & \rightleftharpoons Q^{-2} \sigma Q^{2} & \left(R_{15}\right) \\
U & \rightleftharpoons Q^{-2} U Q^{2} \quad\left(R_{16}\right) \\
U & \rightleftharpoons P Q^{-1} \sigma U \sigma Q P \quad\left(R_{17}\right) \\
U & \rightleftharpoons P Q^{-1} P Q P U P Q^{-1} P Q P \quad\left(R_{18}\right) .
\end{array}
$$

The generators are defined as automorphisms of $F_{n}=\left\langle x_{1}, \ldots x_{n}\right\rangle$ by

$e:$	x_{1}	x_{2}	x_{3}	\ldots	x_{n-1}	x_{n}
$P:$	x_{2}	x_{1}	x_{3}	\ldots	x_{n-1}	x_{n}
$Q:$	x_{2}	x_{3}	x_{4}	\ldots	x_{n}	x_{1}
$\sigma:$	$\left(x_{1}\right)^{-1}$	x_{2}	x_{3}	\ldots	x_{n-1}	x_{n}
$U:$	$x_{1} x_{2}$	x_{2}	x_{3}	\ldots	x_{n-1}	x_{n}.

We now give the modifications of the relations for the case $n=3$. From $Q^{3}=e, R_{7}$, one finds that relations R_{9} and R_{10} become equivalent and that R_{14} is trivial. With the help of (3) one finds that R_{13} and R_{16} are not valid and must be dropped for Φ_{3}.

We have arranged the relations in an order such that the group $\Phi_{2}:=A u t\left(F_{2}\right)$ which acts only on $\left\langle x_{1}, x_{2}\right\rangle$ is given by

$$
\begin{equation*}
\Phi_{2}:=\left\langle P, U, \sigma \mid R_{1} \ldots R_{5}\right\rangle \tag{4}
\end{equation*}
$$

3. New generators and relations

In this section we define a group in terms of generators and relations, which in section 4 is shown to be isomorphic to the group $\Phi_{3}=\operatorname{Aut}\left(F_{3}\right)$ of the free group F_{3}.

Definition 2. The group Φ_{3}^{\prime} is defined in terms of five generators and 20 relations Q_{i} as given below:

$$
\begin{equation*}
\Phi_{3}^{\prime}:=\left\langle c_{12}, c_{23}, c_{34}, \sigma_{1}, c_{2} \mid Q_{1} \ldots Q_{20}\right\rangle \tag{5}
\end{equation*}
$$

We shall arrange the relations Q_{i} into sets which determine certain subgroups of Φ_{3}^{\prime}.
The first set of relations determines a Coxeter group A_{3} :

$$
\left.\begin{array}{rlr}
A_{3}: & \left\langle c_{12}, c_{23}, c_{34}\right\} & \\
& \left(c_{i i+1}\right)^{2}=e & i=1,2,3 \\
& \left(c_{12} c_{23}\right)^{3}=e & \left(q_{23} c_{34}\right)^{3}=e
\end{array}\right)\left(Q_{2}, Q_{3}\right)
$$

In the standard notation for Coxeter groups [4], each generator carries a single index. Here we use the isomorphism $A_{n} \sim \mathcal{S}_{n+1}$ and interprete the generators of A_{3} as transpositions with respect to the pair of indices $(i, i+1)$. Moreover we shall denote a general transposition of the pair of indices (i, j) by $c_{i j}=c_{j i} \in A_{3}$. The second set of relations determines a Coxeter group B_{3} :

$$
\begin{align*}
B_{3}:= & \left\langle c_{34}, c_{13}, \sigma_{1}\right\rangle \\
& \left(c_{34}\right)^{2}=\left(c_{13}\right)^{2}=e \\
& \left(\sigma_{1}\right)^{2}=e \quad\left(Q_{7}\right) \\
& \left(c_{34} c_{13}\right)^{3}=e \tag{7}\\
& \left(c_{13} \sigma_{1}\right)^{4}=e \quad\left(Q_{8}\right) \\
& c_{34} \rightleftharpoons \sigma_{1} \quad\left(Q_{9}\right) \\
& c_{13}:=c_{12} c_{23} c_{12} .
\end{align*}
$$

Note that $A_{3} \cap B_{3}=A_{2}$ and that part of the equations arise already from $Q_{1} \ldots Q_{6}$.
The third set of relations is connected with subgroups of Φ_{3}^{\prime} described in definition 3 and in section 5 .

$$
\begin{array}{ll}
\sigma_{1} \rightleftharpoons c_{23}\left(\sigma_{1} c_{13}\right)^{2} c_{23} & \left(Q_{10}\right) \\
\sigma_{1} \rightleftharpoons c_{14} c_{23} \sigma_{1} c_{23} c_{14} & \left(Q_{11}\right) . \tag{9}
\end{array}
$$

Definition 3. We define a subgroup $\Psi_{4}<\Psi_{3}^{\prime}$ by

$$
\begin{equation*}
\Psi_{4}:=\left\langle c_{12}, c_{23}, c_{34}, \sigma_{1} \mid Q_{1} \ldots Q_{11}\right\rangle \tag{10}
\end{equation*}
$$

This subgroup has only the first four generators of Φ_{3}^{\prime} and all the relations between them.
Now we turn to subgroups of Φ_{3}^{\prime} isomorphic to Φ_{2}.
Proposition 4. The subgroup of Φ_{3}^{\prime} generated by $\left\langle c_{23}, c_{13}, \sigma_{1}\right\rangle$ fulfills the relations

$$
\begin{align*}
\left(c_{23}\right)^{2} & =\left(c_{13}\right)^{2}=\left(\sigma_{1}\right)^{2}=e \\
\left(c_{23} c_{13}\right)^{3} & =e \\
\left(c_{13} \sigma_{1}\right)^{4} & =e \quad\left(Q_{8}\right) \tag{11}\\
\sigma_{1} & \rightleftharpoons c_{23}\left(c_{13} \sigma_{1}\right)^{2} c_{23} \quad\left(Q_{10}\right) .
\end{align*}
$$

and is a subgroup of Ψ_{4} isomorphic to Φ_{2}.
Proof. The relations of (11) follow from $Q_{1} \ldots Q_{5}, Q_{7}$. It was shown in [8] that a group with three generators and the relations given in (11) is isomorphic to Φ_{2}. Clearly the three generators $\left\langle c_{23}, c_{13}, \sigma_{1}\right\rangle$ generate a subgroup of Ψ_{4} given in definition 3 .

We turn to relations involving the generator c_{2}. It is an involution, hence we require

$$
\begin{equation*}
\left(c_{2}\right)^{2}=e \quad\left(Q_{12}\right) \tag{12}
\end{equation*}
$$

The next relations are given in terms of the elements

$$
\begin{equation*}
X_{1}:=c_{2} c_{3} c_{13} c_{2} \quad X_{2}:=c_{2} c_{23} \quad c_{3}:=c_{12} c_{2} c_{12} \tag{13}
\end{equation*}
$$

For the two elements X_{1}, X_{2} we require as the fourth set of relations the following transformations under conjugation $(g, X) \rightarrow X^{g}:=g X^{-1}$ with $\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$:

$$
\begin{array}{lll}
\left(X_{1}\right)^{c_{2}}=X_{1} X_{2} & \left(X_{2}\right)^{c_{2}}=\left(X_{2}\right)^{-1} & \left(Q_{13}, Q_{14}\right) \\
\left(X_{1}\right)^{c_{3}}=\left(X_{2}\right)^{-1} & \left(X_{2}\right)^{c_{3}}=\left(X_{1}\right)^{-1} & \left(Q_{15}, Q_{16}\right) \tag{14}\\
\left(X_{1}\right)^{\sigma_{1}}=\left(X_{1}\right)^{-1} & \left(X_{2}\right)^{\sigma_{1}}=X_{2} & \left(Q_{17}, Q_{18}\right) .
\end{array}
$$

The notation X_{1}, X_{2} will be explained later.

Proposition 5. The subgroup of Φ_{3}^{\prime} generated by $\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$, with relations obtained from (11) by the replacement

$$
\begin{equation*}
c_{23} \rightarrow c_{2} \quad c_{13} \rightarrow c_{3} \quad \sigma_{1} \rightarrow \sigma_{1} \tag{15}
\end{equation*}
$$

is isomorphic to Φ_{2}.
Proof. The proof involves a transformation from the generators given in proposition 4 and uses the relations of (14). From (13) we find

$$
\begin{equation*}
c_{23}=c_{2} X_{2} \quad c_{13}=c_{3} X_{1} X_{2} \tag{16}
\end{equation*}
$$

Inserting these expressions into the relations of (11) and using the conjugation properties (14) of X_{1}, X_{2} in each case, one finds that all these relations are valid under the replacement (15). As an example we consider

$$
\begin{align*}
e & =\left(c_{23} c_{13}\right)^{3} \\
& =\left(c_{2} X_{2} c_{3} X_{1} X_{2}\right)^{3} \\
& =\left(c_{2} c_{3} X_{2}\right)^{3} \\
& =\left(c_{2} c_{3}\right)^{3}\left(c_{2} c_{3}\right)^{-2} X_{2}\left(c_{2} c_{3}\right)^{2}\left(c_{2} c_{3}\right)^{-1} X_{2}\left(c_{2} c_{3}\right) X_{2} \\
& =\left(c_{2} c_{3}\right)^{3}\left(X_{2}^{-1} X_{1}^{-1}\right) X_{1} X_{2} \\
& =\left(c_{2} c_{3}\right)^{3} . \tag{17}
\end{align*}
$$

All the relations together determine a group $\boldsymbol{\Phi}_{2}$.
The two subgroups of propositions 4, 5 are isomorphic but not conjugate to one another. For the conjugation of the generator σ_{1} with elements from A_{3} we introduce the notation $\sigma_{212}:=\sigma_{1}$. In view of the stability (equation (7)) Q_{9} of σ_{212} under c_{34}, there are altogether 12 conjugates of σ_{1} under A_{3} which we denote by

$$
\begin{equation*}
i \neq j: \sigma_{i j i}:=\left(\sigma_{212}\right)^{c_{j i} c_{i 2}} \tag{18}
\end{equation*}
$$

Finally we require two more relations between c_{2} and generators not in Φ_{2} :

$$
\begin{align*}
c_{2} & \rightleftharpoons \sigma_{343}=\left(\sigma_{1}\right)_{41} c_{32} \\
c_{23} & =c_{2} \sigma_{2} q \quad\left(Q_{19}\right) \tag{19}\\
q & :=q_{23} c_{14} c_{2} c_{14} c_{23} \\
\sigma_{2} & :=c_{3} \sigma_{1} c_{3} .
\end{align*}
$$

4. Isomorphism with $\operatorname{Aut}\left(F_{3}\right)$

In this section we relate Φ_{3}^{\prime} to $\Phi_{3}=A u t\left(F_{3}\right)$. First we relate the sets of generators, then we derive the Nielsen relations of section 2 from the relations $Q_{1} \ldots Q_{20}$ and thus prove the isomorphism of Φ_{3}^{\prime} with $\operatorname{Aut}\left(F_{3}\right)$. The proofs are independent of the action of $\operatorname{Aut}\left(F_{3}\right)$ on F_{3}.

The group Φ_{3}^{\prime} contains two distinct subgroups isomorphic to Φ_{2} (compare proposition 4,5). Nielsen's Φ_{2} is identified by

Lemma 6. Upon setting

$$
\begin{equation*}
\sigma=\sigma_{1} \quad P=\sigma_{1} c_{3} \sigma_{1} \quad U=c_{3} \sigma_{1} c_{3} c_{2} \quad c_{3}:=c_{2} c_{12} c_{2} \tag{20}
\end{equation*}
$$

and using the relations $Q_{1} \ldots Q_{18}$, the Nielsen relations $R_{1} \ldots R_{5}$ are fulfilled, and the subgroup $\Phi_{2}=\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$ is generated.

Proof. The lemma is obtained from proposition 5 derived from $Q_{13} \ldots Q_{18}$ and from the transformations (20). The Nielsen relations then follow as given in [8], proposition 1.

Lemma 7. Define the Coxeter group conjugate to B_{3} with generators

$$
\begin{equation*}
P_{23}:=\left(c_{34}\right)^{c_{2} c_{23} \sigma_{1}} \quad P_{12}:=\left(c_{13}\right)^{c_{2} c_{23} \sigma_{1}} \quad \sigma_{1}=\left(\sigma_{1}\right)^{c_{2} c_{23} \sigma_{1}} \tag{21}
\end{equation*}
$$

Then with the transformations

$$
\begin{equation*}
P:=P_{12} \quad Q:=P_{23} P_{12} \quad \sigma=\sigma_{1} \tag{22}
\end{equation*}
$$

the Nielsen relations $R_{1}, R_{2}, R_{6} \ldots R_{11}$ are fulfilled.
Proof. Clearly a conjugation transformation preserves the commutator properties of the group B_{3}. Next we note that the expressions for P given in (20) and (22) agree by use of Q_{18}. The Nielsen relations $R_{1}, R_{2}, R_{6} \ldots R_{11}$ involve only the generators P, Q, σ. It is easy to see that they arise from the Coxeter group B_{3}, hence from $Q_{1} \ldots Q_{11}$ and equations (21), (22), and yield this group in Nielsen form.

The two-index notation for B_{3} introduced in lemma 7 anticipates the action of this group on the generators of F_{3}, but it has no simple relation with the two-index notation for A_{3} introduced in (6). For later use we note that from (13), (14), Q_{18} we have

$$
\begin{equation*}
c_{2} c_{23} \sigma_{1}=\sigma_{1} c_{2} c_{23} \tag{23}
\end{equation*}
$$

which allows us to rewrite equation (21) in the form

$$
\begin{equation*}
P_{23}=\left(c_{24}\right)^{\sigma_{1} c_{2}} \quad P_{12}=\left(c_{12}\right)^{\sigma_{1} c_{2}} \quad \sigma_{1}=\left(\sigma_{313}\right)^{\sigma_{1} c_{2}} \tag{24}
\end{equation*}
$$

Taking the group B_{3} in Nielsen form and using equations (19), (23) one finds

$$
\begin{equation*}
\sigma_{2}=P_{12} \sigma_{1} P_{12} \quad \sigma_{3}:=P_{23} \sigma_{2} P_{23} \tag{25}
\end{equation*}
$$

The elements σ_{i} are easily shown to commute with one another. They are permuted under conjugation with the permutations of B_{3}.

With the expressions of lemmas 6 and 7, the Nielsen generators are given as functions of the generators (5) of Φ_{3}^{\prime}. We turn now to the inverse transformations.

Proposition 8. The generators of Φ_{3}^{\prime} can be expressed as functions of the Nielsen generators.

Proof. From the subgroup Φ_{2} of lemma 6 one finds (cf [8]) the expressions

$$
\begin{equation*}
\sigma_{1}=\sigma \quad c_{2}=\sigma P \sigma P \sigma U \quad c_{3}=\sigma P \sigma \tag{26}
\end{equation*}
$$

We obtain by conjugation from (24)

$$
\begin{equation*}
c_{12}=c_{2} \sigma P_{12} \sigma c_{2} \quad c_{24}=c_{2} \sigma P_{23} \sigma c_{2} \tag{27}
\end{equation*}
$$

With $P_{12}=P, P_{23}=Q P$ and (26), the right-hand sides of (27) become functions of the Nielsen generators. With $c_{14}=c_{12} c_{24} c_{12}$ we get this transposition as a function of Nielsen generators. From Q_{20}, (A1) and (29) one may now write the generator c_{23} as a function of the Nielsen generators. Since $c_{34}=c_{23} c_{14} c_{23}$, we can then express the five generators of Φ_{3}^{\prime} as functions of the Nielsen generators.

Proposition 9. The generators of Φ_{3}^{\prime} act on the free group F_{3} according to

$e:$	x_{1}	x_{2}	x_{3}
$c_{12}:$	$\left(x_{1}\right)^{-1}$	$x_{1} x_{2}$	x_{3}
$c_{23}:$	$x_{1} x_{2}$	$\left(x_{2}\right)^{-1}$	$x_{2} x_{3}$
$c_{34}:$	x_{1}	$x_{2} x_{3}$	$\left(x_{3}\right)^{-1}$
$\sigma_{1}:$	$\left(x_{1}\right)^{-1}$	x_{2}	x_{3}
$c_{2}:$	$x_{1} x_{2}$	$\left(x_{2}\right)^{-1}$	x_{3}.

Proof. We use proposition 8 to pass to the Nielsen generators and equation (3) to find the action on F_{3}.

Lemma 10. The Nielsen relations (2), $R_{12} \ldots R_{18}$ follow by transforming with proposition 8 to the generators of Φ_{3}^{\prime} and use of the relations $Q_{1} \ldots Q_{20}$.

Proof. See appendix A.
Proposition 11. The groups

$$
\begin{align*}
& \Phi_{3}=\left\langle P, Q, \sigma, U \mid R_{1} \ldots R_{18}\right\rangle \\
& \Phi_{3}^{\prime}=\left\langle c_{12}, c_{23}, c_{34}, \sigma_{1}, c_{2} \mid Q_{1} \ldots Q_{20}\right\rangle \tag{29}
\end{align*}
$$

are isomorphic.
Proof. From lemma 10, it follows that $\Phi_{3}^{\prime} \leqslant \Phi_{3}$. Through the expressions of proposition 9, it can be checked that relations $Q_{1} \ldots Q_{20}$ of Φ_{3}^{\prime} hold true in terms of actions on F_{3}. It follows that Φ_{3}^{\prime} produces no relations beyond Φ_{3}, hence Φ_{3}^{\prime} is isomorphic to Φ_{3}.

5. Subgroups of $\boldsymbol{A u t}\left(F_{3}\right)$

The generators for Φ_{3} given in section 3 were already adapted to the subgroups A_{3}, B_{3} and Φ_{2}. In the latter case we found two isomorphic but non-conjugate subgroups. Their relation may be interpreted by deriving the action of the group elements X_{1}, X_{2} from (13) and (28). One finds

$$
\begin{array}{llll}
e: & x_{1} & x_{2} & x_{3} \\
X_{1}: & x_{1} & x_{2} & x_{1} x_{3} \tag{30}\\
X_{2}: & x_{1} & x_{2} & x_{2} x_{3} .
\end{array}
$$

It is easy to see that these two elements of Φ_{3} generate a subgroup isomorphic to F_{2}. Considering now the action of Φ_{2} by conjugation on X_{1}, X_{2} given in (14), one finds that $F_{2}=\left\langle X_{1}, X_{2}\right\rangle$ may be combined with $\Phi_{2}=\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$ into a semidirect product $F_{2} \times_{s} \Phi_{2}$ in which the factor F_{2} is an invariant subgroup.

A different type of subgroup is found within Ψ_{4} :
Proposition 12. In the group Ψ_{4}, the elements

$$
\begin{array}{ll}
S_{1}:=\sigma_{121} \sigma_{131} \sigma_{141} & S_{2}:=\sigma_{212} \sigma_{232} \sigma_{242} \\
S_{3}:=\sigma_{313} \sigma_{323} \sigma_{343} & S_{4}:=\sigma_{414} \sigma_{424} \sigma_{434} \tag{31}
\end{array}
$$

are involutive and generate a normal subgroup \mathcal{X}_{4}. The conjugation properties of the elements (31) under $p \in A_{3}$ and σ_{1} are

$$
\begin{gather*}
\left(S_{i}\right)^{p}=S_{p(i)} \tag{32}\\
\left(S_{1}\right)^{\sigma_{1}}=S_{2} S_{1} S_{2} \quad\left(S_{2}\right)^{\sigma_{1}}=S_{2} \quad\left(S_{3}\right)^{\sigma_{1}}=S_{3} \quad\left(S_{4}\right)^{\sigma_{1}}=S_{4} . \tag{33}
\end{gather*}
$$

Proof. From Q_{8} one finds that $\left(c_{13} \sigma_{1}\right)^{2}=\left(\sigma_{1} c_{13}\right)^{2}$ so that $\sigma_{212} \rightleftharpoons \sigma_{232}$. By conjugation with c_{34} and use of Q_{9}, one finds $\sigma_{212} \rightleftharpoons \sigma_{242}$ and, by conjugation with $c_{14}, \sigma_{242} \rightleftharpoons \sigma_{232}$. Hence S_{2} is a product of three commuting involutions so that $\left(S_{2}\right)^{2}=e$. Since S_{1}, S_{3}, S_{4} can be obtained from S_{2} by conjugation, they are also involutions. To examine the normal property it suffices to conjugate the S_{i} with the four generators of Ψ_{4}. Under A_{3}, one easily finds that $S_{1}, S_{2}, S_{3}, S_{4}$ are permuted as given in (35). Under σ_{1} one finds with the help of Q_{10}, Q_{11} and their conjugates the results of (36). Since the conjugates under all the generators of Ψ_{4} are expressed by $S_{1}, S_{2}, S_{3}, S_{4}$, the normal property follows.

From this group we pass to the following proposition.
Proposition 13. The subgroup $\mathcal{F}_{3}=\left\langle T_{1}, T_{2}, T_{3}\right\rangle$

$$
\begin{equation*}
T_{1}=S_{1} S_{2} \quad T_{2}=S_{2} S_{3} \quad T_{3}=S_{3} S_{4} \tag{34}
\end{equation*}
$$

written in terms of the involutive generators of \mathcal{X}_{4}, is the normal subgroup $\operatorname{Inn}\left(F_{3}\right) \triangleleft$ $\operatorname{Aut}\left(F_{3}\right)$ of inner automorphisms in Φ_{3} and is isomorphic to F_{3}. Under conjugation with the generators of $\operatorname{Aut}\left(F_{3}\right)$, the transformation laws are

$T_{i}:$	T_{1}	T_{2}	T_{3}
$\left(T_{i}\right)^{c_{12}}:$	$\left(T_{1}\right)^{-1}$	$T_{1} T_{2}$	T_{3}
$\left(T_{i}\right)^{c_{23}}:$	$T_{1} T_{2}$	$\left(T_{2}\right)^{-1}$	$T_{2} T_{3}$
$\left(T_{i}\right)^{c_{34}}:$	T_{1}	$T_{2} T_{3}$	$\left(T_{3}\right)^{-1}$
$\left(T_{i}\right)^{\sigma_{1}}:$	$\left(T_{1}\right)^{-1}$	T_{2}	T_{3}
$\left(T_{i}\right)^{c_{2}}:$	$T_{1} T_{2}$	$\left(T_{2}\right)^{-1}$	T_{3}

Moreover the generators $\left\langle T_{1}, T_{2}, T_{3}\right.$) are the images of $\left(x_{1}, x_{2}, x_{3}\right\rangle$ under the isomorphism.
Proof. See appendix B.
Computation of the action of $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ on F_{3} shows that these automorphisms generate the inner automorphisms $T_{i}: w \rightarrow(w)^{x_{i}^{-i}}, i=1,2,3$ respectively. For any free group, $\operatorname{Inn}\left(F_{n}\right)$ is isomorphic to F_{n}. Comparing the action (35) of the generators by conjugation on $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ with their action on $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ given in (28), one finds the correspondence $T_{i} \sim x_{i}$ under this isomorphism.

6. Towards non-commutative crystallography

As one possible field of applications we indicate here the elements of non-commutative (NC) crystallography. The subgroups of $\operatorname{Aut}\left(F_{3}\right)$ given in the previous sections allow one to construct generalized notions for the translation, point and space groups of standard crystallography.

From proposition 13, an isomorphic image of the free group F_{3} appears in $\operatorname{Aut}\left(F_{3}\right)$ as the normal subgroup \mathcal{F}_{3}. We interprete this normal subgroup as an NC translation group $\mathcal{T}:=\mathcal{F}_{3}=\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ with the following motivation:
(i) By the homomorphism hom h $_{1}: F_{3} \rightarrow Z^{3}$ called abelianization, F_{3} and hence \mathcal{T} maps into the Abelian group Z^{3} with three generators, isomorphic to a translation group.
(ii) By extending the affine representation given in [8] from $\operatorname{Aut}\left(F_{2}\right)$ to $\operatorname{Aut}\left(F_{3}\right)$, it can be shown that the generators $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ admit a representation by discrete shifts on a 3 D lattice. Any closed path formed from discrete shifts represents an element from the kernel $\operatorname{ker}\left(h_{o m}\right)$.

There is a second homomorphism $\operatorname{hom}_{2}: \operatorname{Aut}\left(F_{3}\right) \rightarrow G l(3, Z)$ [9] which links automorphisms to symmetry transformations on a lattice. Moreover the two Coxeter subgroups given in section 3 (6), (7) are isomorphic to crystallographic point groups, $A_{3}=T_{d}=\overline{4} 3 m, B_{3}=O_{h}=m 3 m$. They may then be taken as finite point groups in NC crystallography.

Clearly the generators of these groups must map by conjugation $\mathcal{T} \rightarrow \mathcal{T}$. It is not difficult to check that the subgroup \mathcal{T}, combined with each one of these point groups, fulfills the condition for a semidirect product in which the subgroup \mathcal{I} is normal. This allows one to introduce the two NC symmorphic space groups $\mathcal{T} \times_{s} A_{3}$ and $T \times_{s} B_{3}$.

We have then within $\operatorname{Aut}\left(F_{3}\right)$ all the elements of a NC crystallography in which the commutativity of the translation group is broken and the point symmetry can be preserved. Quasicrystals lack the periodicity of crystals and therefore display a type of order where this scheme may apply. To implement it one should explore within this scheme production rules that can describe quasicrystals (cf [2]).

7. Conclusion

We have given new involutive generators and relations for $\operatorname{Aut}\left(F_{3}\right)$. The new generators for $\operatorname{Aut}\left(F_{3}\right)$ are adapted to some finite and infinite subgroups. In all cases we give the explicit generators of these subgroups. The new relations lead to an interpretation of the relations given by Nielsen: they are closely connected to the existence of certain (normal) subgroups of $\operatorname{Aut}\left(F_{3}\right)$.

We indicate the generalization to $n \geqslant 3$: the finite Coxeter groups A_{n} and B_{n} appear in full analogy as subgroups of $A u t\left(F_{n}\right)$. This is shown in [1] for A_{n} and from Nielsen [9,10] clearly for B_{n}. Both these subgroups together generate a subgroup Ψ_{n+1} which generalizes the group Ψ_{4} of definition 3. Their intersection is $A_{n} \cap B_{n}=A_{n-1}$. Ψ_{n+1} has a normal subgroup \mathcal{X}_{n+1} which generalizes \mathcal{X}_{4} of proposition 12 , and \mathcal{X}_{n+1} has a subgroup normal in $\operatorname{Aut}\left(F_{n}\right)$ which is $\operatorname{Inn}\left(F_{n}\right)$ and isomorphic to F_{n}. In $\operatorname{Aut}\left(F_{3}\right)$, the new generator c_{2} appeared which does not belong to Ψ_{4}. The case $n=2$ is special since then $\operatorname{Aut}\left(F_{2}\right) \sim \Psi_{3}$ (cf [8]).

Appendix A. Derivation of the Nielsen relations and proof of lemma 10

Since $R_{1} \ldots R_{11}$ have previously been treated, it suffices to consider the remaining relations $R_{12} \ldots R_{20}$. Of these, R_{14} is trivial and R_{13}, R_{16} are not valid for $n=3$. We turn to the remaining relations R_{12}, R_{15}, R_{17} and R_{18}.
R_{12} :
To deal with R_{12} we need an important intermediate result from relation Q_{20}. We multiply from the right with c_{23} and obtain for $c_{14} c_{23}$ the expression

$$
\begin{align*}
c_{14} c_{23} & =\sigma_{2} c_{2} c_{14} c_{2} \\
& =\sigma_{2} \sigma_{1}\left(c_{14}\right)^{\sigma_{1} c_{2}} \sigma_{1} \tag{A1}\\
& =\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) P_{13} .
\end{align*}
$$

We used the relations of (24), (25) from B_{3} in Nielsen form in the last step. Expression (A1) is remarkable since the left-hand side is an element of A_{3}, while the right-hand side is an element of B_{3} in Nielsen form.

To construct the left-hand side of R_{12} we start from $c_{34}=c_{24} c_{23} c_{24}$ and obtain by use of the relations for B_{3} in Nielsen form and by those indicated to the right

$$
\begin{align*}
\left(c_{34}\right)^{\sigma_{1} c_{2}} & =P_{23}\left(c_{23}\right)^{\sigma_{1} c_{2}} P_{23} \\
& =P_{23} \sigma_{1} c_{2}\left(c_{14} c_{23} c_{2} c_{23} c_{14} \sigma_{2} c_{2}\right) c_{2} \sigma_{1} P_{23} \quad\left(Q_{20}\right) \\
& =P_{23}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)\left(\sigma_{2} c_{2}\right) P_{13} \sigma_{2} c_{2} P_{13}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) \sigma_{2} \sigma_{1} P_{23} \quad\left(Q_{19}\right) \tag{A2}\\
& =\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)\left(P_{23}\left(\sigma_{2} c_{2}\right) P_{23}\right)\left(P_{23} P_{13} \sigma_{2} c_{2} P_{13} P_{23}\right)\left(\sigma_{1} \sigma_{2}\right) \\
& =\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)\left(P Q^{-1} U Q P\right)\left(Q^{-1} U Q\right)\left(\sigma_{1} \sigma_{2}\right)
\end{align*}
$$

In the last steps we used the expression $U=c_{3} \sigma_{1} c_{3} c_{2}=\sigma_{2} c_{2}$ and equation (22).
To construct the right-hand side of R_{12} we use $c_{34}=c_{14} c_{23} c_{12} c_{23} c_{14}$ and derive from (20) and Φ_{2}, lemma 6,

$$
\begin{equation*}
c_{12}=c_{3} c_{2} c_{3}=\sigma_{2} P_{12} \sigma_{2} c_{2} P_{12} \sigma_{1} \sigma_{2} \tag{A3}
\end{equation*}
$$

Inserting this expression and using (A1) we find

$$
\begin{align*}
\left(c_{34}\right)^{\sigma_{1} c_{2}} & =\sigma_{1} c_{2}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) P_{13}\left(\sigma_{2} P_{12} \sigma_{2} c_{2} P_{12} \sigma_{1}\right) P_{13}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) c_{2} \sigma_{1} \\
& =\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) \sigma_{2} c_{2} P_{13} P_{12} \sigma_{2} c_{2} P_{12} P_{13} c_{2} \sigma_{2}\left(\sigma_{1} \sigma_{2}\right) \quad\left(Q_{19}\right) \tag{A4}\\
& =\left(\sigma_{1} \sigma_{2} \sigma_{3}\right)\left(U Q^{-1} U Q U^{-1}\right)\left(\sigma_{1} \sigma_{2}\right) .
\end{align*}
$$

By equating the final expressions (A2) and (A4), and taking out the same factors on the left and on the right, we obtain relation R_{12}.
$R_{l S}:$
This relation may be rewritten with (25) and σ_{2} from (19) in the form

$$
\begin{equation*}
\sigma_{2} c_{2} \rightleftharpoons \sigma_{3} \tag{A5}
\end{equation*}
$$

Since from (25) $\sigma_{2} \rightleftharpoons \sigma_{1}, \sigma_{343}=\sigma_{3} \rightleftharpoons \sigma_{1}, R_{15}$ reduces to $c_{2} \rightleftharpoons \sigma_{343}$, which is Q_{19}.
$R_{77}:$
To prove R_{17} we rewrite the left-hand side using (A1), by the steps

$$
\begin{align*}
Q\left(\sigma_{3} c_{34}\right) Q^{-1} & =P_{12} P_{13}\left(\sigma_{3} c_{34}\right) P_{13} P_{12} \\
& =\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) P_{12} c_{14} c_{23}\left(\sigma_{3} c_{34}\right) c_{23} c_{14} P_{12}\left(\sigma_{1} \sigma_{2} \sigma_{3}\right) \tag{A6}\\
& =\sigma_{2} c_{2}=U
\end{align*}
$$

where commutators from Φ_{2}, lemma 6 were used in the last step. The right-hand side is transformed with lemma 6 as

$$
\begin{equation*}
P_{23} \sigma U \sigma P_{23}=Q\left(c_{12} \sigma_{1}\right) Q^{-1} \tag{A7}
\end{equation*}
$$

so that R_{17} is equivalent to

$$
\begin{equation*}
R_{17}: \sigma_{3} c_{34} \rightleftharpoons c_{12} \sigma_{1} \tag{A8}
\end{equation*}
$$

This relation can be shown from relations in B_{3} (7) and their conjugates, and from relations in A_{3} (6).
$R_{78}:$
This relation in Φ_{3} becomes

$$
\begin{equation*}
R_{18}: U \rightleftharpoons P_{13} U P_{13} \tag{A9}
\end{equation*}
$$

With the help of (A1), the right-hand side can be rewritten as

$$
\begin{equation*}
P_{13} \sigma_{2} c_{2} P_{13}=\sigma_{3} q \sigma_{2} \sigma_{3} \tag{A10}
\end{equation*}
$$

With Q_{19} we get the equivalent form

$$
\begin{equation*}
R_{18}: \sigma_{2} c_{2} \rightleftharpoons q \sigma_{2}\left(Q_{19}, Q_{20}\right) \tag{A11}
\end{equation*}
$$

In this form, the relation can be derived from Q_{20}, rewritten as

$$
\begin{equation*}
c_{23}=c_{2} \sigma_{2} q=q \sigma_{2} c_{2} . \tag{A12}
\end{equation*}
$$

Note that relations Q_{19}, Q_{20}, not related to one of the subgroups Φ_{2}, A_{3}, B_{3}, are needed in the proof and hence are implicit in the Nielsen relations.

Appendix B. The normal subgroup $\left(T_{1}, T_{2}, T_{3}\right)$; proof of proposition 13

The conjugation with the first four generators of $\operatorname{Aut}\left(F_{3}\right)$ follows from proposition 12 and (34). It suffices to conjugate the three group elements with the remaining generator c_{2}. For this purpose we factorize the elements $S_{i}, i=1,2,3$ into a first factor from the group $\Phi_{2}=\left\langle c_{2}, c_{3}, \sigma_{1}\right\rangle$ of lemma 6 and a second factor with simple conjugation properties under Φ_{2}. These factorizations become

$$
\begin{array}{lll}
S_{1}=v_{1}\left(X_{1} X_{2}\right)^{2} \sigma_{141} & v_{1}=c_{1} \sigma_{1} \sigma_{2} c_{1} & \sigma_{141}=\left(X_{1} X_{2}\right)^{-1} \sigma_{343}\left(X_{1} X_{2}\right) \\
S_{2}=v_{2}\left(X_{2}\right)^{2} \sigma_{242} & v_{2}=\sigma_{1} \sigma_{2} & \sigma_{242}=\left(X_{2}\right)^{-1} \sigma_{343} X_{2} . \\
S_{3}=v_{3} \sigma_{343} & v_{3}=c_{2} \sigma_{1} \sigma_{2} c_{2} &
\end{array}
$$

Note that σ_{343} from relations Q_{9}, Q_{11}, Q_{19} commutes with all elements of Φ_{2}. Under conjugation with c_{2} we get

$$
\begin{array}{llll}
& S_{1} & S_{2} & S_{3} \tag{B2}\\
\left(S_{i}\right)^{c_{2}}: & v_{1} X_{1} \sigma_{343} X_{1} & v_{3}\left(X_{2}\right)^{-1} \sigma_{343}\left(X_{2}\right)^{-1} & v_{2} \sigma_{343}
\end{array}
$$

Next we derive for the automorphisms X_{1}, X_{2} defined in (16) the relations

$$
\begin{equation*}
\sigma_{343} X_{i} \sigma_{343} \rightleftharpoons X_{j} \quad i j=11,22,12,21 \tag{B3}
\end{equation*}
$$

For $i=j$, equation (B 3) follows from relation Q_{10}, written in terms of the generators of Φ_{2}, and for $i j=21$ from conjugates of (A8). Using equations (B1)-(B3) and conjugations under Φ_{2} one finds

$$
\begin{align*}
& \left(S_{1} S_{2}\right)^{c_{2}}=S_{1} S_{3}=\left(S_{1} S_{2}\right)\left(S_{2} S_{3}\right) \tag{B4}\\
& \left(S_{2} S_{3}\right)^{c_{2}}=S_{3} S_{2}
\end{align*}
$$

To conjugate $S_{3} S_{4}$ we make use of

$$
\begin{equation*}
S_{3} S_{4}=c_{14} c_{23} S_{2} S_{1} c_{23} c_{14} \quad c_{2}=c_{14} c_{23} q c_{23} c_{14} \quad q=\sigma_{2} c_{2} c_{23} \tag{B5}
\end{equation*}
$$

to derive

$$
\begin{equation*}
\left(S_{2} S_{1}\right)^{q}=\left(S_{2} S_{1}\right) \leftrightarrow\left(S_{3} S_{4}\right)^{c_{2}}=S_{3} S_{4} . \tag{B6}
\end{equation*}
$$

Equations (B4), (56) together with (34) yield the last row of (35) for $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ and lead to the normal property of the subgroup generated by them.

References

[1] Garcia-Escudero J and Kramer P 1993 Anales de Fisica, Munografias 1, vol 1 (Madrid) pp 339-42
[2] Garcia-Escudero J and Kramer P 1993 J. Phys. A: Math. Gen. 26 L1029-35
[3] Garcia-Escudero J and Kramer P 1993 Proc. Int. Wigner Symposium (Oxford)
[4] E J Humphreys 1990 Reflection Groups and Coxeter Groups (Cambridge: Cambridge University Press)
[5] Kramer P 1993 Anales de Fisica, Monografias 1, vol 2 (Madrid) pp 370-3
[6] Kramer P 1993 J. Phys. A: Math. Gen. 26 213-28
[7] Kramer P 1993 J. Phys. A: Math. Gen. 26 L245-50
[8] Kramer P 1994 J. Phys. A: Math. Gen. 27201 1-22
[9] Magnus W, Karras A and Solitar D 1976 Combinatorial Group Theory (New York: Dover)
[10] Nielsen J 1924 Math. Ann. 91 169-209

